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*1 NOTATION2.

A Amplitude of unstable disturbance during downstream growth

A Initial amplitude of disturbance .A.
0 U

s C Local pressure coefficient, C - 1 - 2

p p

C Minimum value of local pressure coefficient
Pmin

D Maximum diameter of axisymmetric body

M ,M Dimensionless pressure gradient for two-dimensional and
2 3 axisymmetric flows defined by equations (A7) and (A12)

P ,P Function defined in Appendix A

2 3

R(x) Function defined in Appendix A
DU

R Body Reynolds number, R -

LU

RL Reynolds number, RL - ,, 0-
S (x)

RS Local Reynolds number, R S  t te
- t St v "

R6, Dimensionless displacement thickness, R 3 e (

3 3
r (x) Local radial distance of axisymmetric body shape0 ',

s Distance along axisymmetric body surface
3

s Downstream distance for two-dimensional flow
2

(s 'Y) Downstream and transverse coordinates for axisymmetric flow
3 3

(s ,y ) Downstream and transverse coordinates for two-dimensional "
22 flow

St  Downstream distance locating the position of transition

S Downstream distance locating the position of C
Pmin Pmin

t Subscript denoting transition

u(n) Local velocity within the boundary layer region

Vv
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U e(s) Local velocity at the edge of the boundary layer

U Uniform velocity upstream of body

x Axial distance measured from stagnation point

,n Similarity variables defined in Appendix A a^

Dimensionless pressure gradient parameter defined in
Appendix A

6*(8,) Computed displacement thickness defined in Appendix A

6* Displacement thickness for axisymmetric shape
3

6* Displacement thickness for two-dimensional shape
2
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ABSTRACT ' .6

This investigation examines the inherent potential flows

and laminar boundary layer characteristics on the nose surface
of axisymmetric bodies that can postpone the natural transi-
tion process from a laminar to turbulent flow. Based on this

analysis, an effort is made to find a correlation between the
geometrical features of a given body shape, and the ability of

that shape to delay transition. Ellipsoidal forebodies for

which stability computations have been performed, are pre-

sented to show those attributes of a good nose design. These

examples give some direction to future work in obtaining the

optimal design.
Prior to the discussion of the effects of nose shape on

transition, a brief review of the method commonly used for

predicting transition is presented followed by a discussion of

the distinctive features of axisymmetric flows as compared to

the widely discussed two-dimensional flows. This is essential

background material and forms the basis of most of the argu-

ments presented on the choice of a good bow shape design.
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1.0 METHOD FOR PREDICTING TRANSITION

1.1 BACKGROUND

The development of the viscous boundary layer on the nose of an axi-

symmetric body normally starts at the stagnation point as a steady lamd-

nar flow growing in thickness along the downstream direction until irregu-

lar fluctuations or bursts appear causing the process of transition from

-~c. 1the laminar to turbulent flow. The transition process is caused by "in-

stability" of the flow, that is, the tendency for small natural distur-

bances (due to noise, mechanical vibrations, surface roughness, non-uni-

formity of the oncoming stream, etc.) to be amplified into substantial

fluctuations.

The classical method for predicting the location of transition is

based on stability theory which attempts to predict if these natural

disturbances, inherent in all flows, will grow or decay during the down-

stream development of the laminar boundary layer.

The analysis assumes that these disturbances are represented as

infinitesimal two-dimensional velocity fluctuations

u' - ,(y) exp [i(ax-wt)I

where a = a + ia - complex wave number of disturbance
r

c = 2r/a phase velocity of wave

S w, circular frequency of wave

Instability of the flow occurs when the spatial amplification rate

is positive or a < 0, for which the disturbance begins to grow spatially• i
in a complex three-dimensional manner until the eruption of a turbulent

burst. The growth pattern of these discrete unstable waves can be

DeMetz, F.C. and M.J. Casarella "An Experimental Study of the Intermit-
tent Properties of the Boundary Layer Pressure Field During Transition
on a Flat Plate," NSRDC Report 4140 (November 1973).

2
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characterized by the spatial amplification ratio, A ( * which measures
A

the amplification from the initial instability (neutral stability point)

to the onset of burst eruptions. The Smith-Gamberoni method of predicting

transition is based on the criterion that the onset of bursting will occur

A 2
when ln(- ) 9-11. However, the pioneering work by Granville was the

1 0

first attempt at correlating the conditions of the flow instability with

the onset of fully turbulent flow. His work identified the inherent flow

characteristic that allow realistic predictions for a wide class of body

shapes.

It has been shown experimentally that these two-dimensional regular

0 waves do not properly represent the growth of the waves on axisymmetric

bodies prior to the breakdown of the flow into turbulent burst. Further-

more, the amplification ratio concept of predicting transition is based

strictly on linear stability theory for infinitesimal disturbances and

does not account for the actual phenomena of three-dimensionality, non-

linear interaction of the waves, and vortex breakdown. However, the

Smith-Gamberoni method appears to predict transition within a 20 per cent

range for low Reynolds number.

-.% In order to predict the growth of the wave by this method and its

. subsequent amplification rate when ai < 0, numerical solutions of the

eigenvalue problem posed by the Orr-Sommerfeld equations are required at

each station along the axisymmetric body surface. This requires a

significant amount of computational effort. The input for this program

requires knowing the laminar boundary layer velocity profile (-) and
Ue

2Granville, P.S., "The Calculation of the Viscous Drag of Bodies of
Revolution," DTMB Report No. 849 (July 1953).

3
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the local displacement Reynolds number R,* at each station along the

axisymmetric body surface prior to the onset of transition.

The Smith-Gamberoni method of prediction, based on solutions of

the Orr-Sommerfeld equation, is widely used because it reflects the best

current state-of-the-art technique. The results appear to have some

correlation with experimental results obtained in model testing at

6
Reynolds numbers (RD = 8-i0xlO). These values are significantly lower

than those existing in an operational environment (e.g., RD - 50 -

110 x 106). Experimental tests at higher Reynolds numbers, which are

lacking, are required in order to gain confidence in the validity of the W

prediction technique for even the most conventional shaped bodies. How-

ever, the Smith-Gamberoni method can be used to make comparative evalua-

tions of various shapes in order to gain insight into the so-called "best

preliminary design." This is essentially the philosophy underlying the

remarks contained in this report.

1.2 SUMMARY OF COMPUTATIONAL PROCEDURE

The overall algorithm for predicting the transition point is shown

in Figure 1. Four distinct phases of the computational algorithm are

required. These are shown schematically in Figure I and will be briefly

discussed. Appendix A, which is a condensed version of the equations

derived in Reference 3, contains the derivation and summary of the

equation used in this discussion.

* A. Axisymmetric Potential Flow Computation
U

By using the Neumann Program, the pressure distribution C and
U

3Niedzwecki, J., "Laminar and Turbulent Incompressible Boundary Layers on
Bodies of Revolution in Axial Flow," Doctoral Dissertation, Catholic

*. University of America, Dept. of Mechanical Engineering (Feb 1977).

4
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are computed. From these results one must numerically evaluate M3 given

by equation (A5) as.

2S3 dU
M3(s3) =- e

U ds3

- , where

= + (r') dx
00

and s3 is the distance along the body surface, r (x) the radius of the
0

body, and x is the axial distance measured from the nose of the body.
Ue m

In the vicinity of the stagnation point of a blunt body - o s3 , hence

lim (M3) - 2m. For the axisymmetric stagnation flow on a disk, m - 1,
s3-"0
hence lim M3 = 2.0. This value is used in all the computer studies. -.

S3-0
In general 2.0 > M > 0 and decreases with increasing s3 in the favorable

pressure gradient region.

B. Mangler Transformation into Two-Dimensional Coordinates

The axisymmetric coordinates (s3, Y3) and the pressure gradient para-

meter M3 are transformed into the equivalent two-dimensional similarity

coordinates (f, )* and pressure gradient parameter a through the equations

A), (A3), and (A4) given as

2- -2 s 3

= URDoP

_2* ,%UP 3  -

e 3• 
- Y3

53

M3

2P3(s3)

where s3 = s/D, y3 y31D, r = r /D, U =U /U' o 0 e e '-

*- *These are called the Mangler-Levy-Lees transformations, see Appendix A.

6
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* The local value of 0 along the nose surface is the single most important

external flow characteristic governing the laminar boundary layer pro-

perties and consequently, affecting the location of transition. There-

fore, some comments are in order regarding the magnitude of this function

in the favorable pressure gradient region downstream of the nose stagnation I
* .-.,

point. Again, assume - sm and r as for the stagnation region onU.0 3

the axiymmetric body, then lim (M) - 2m and lim (2P2 ) - 2p+m+l hence,
S3  3 sO 3• S3 3

6(o) 2m For the disk stagnation flow, m - 1 and p 1 1, there-
2p+m+lVp

fore 8(0) = 0.5 and this value is used as the starting value for the

computer solutions. In general, the range of values in the favorable

pressure gradient region downstream of the nose are

2.0 > M (s) > 0 2 > p (s) >

and 05 .

C. Two-Dimensional Laminar Boundary Layer Computations

The two-dimensional laminar boundary equation in the transformed

4coordinates is given as

fi' + fi + 8[l-(f') 2] - 2fif' e fg

.-... .,.

*It has been brought to our attention by Dr. von KerczeK that 3>1 can occur

on flat faced bodies of revolution downstream of the stagnation point.

7
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where u f'(n) and 6 function (M3 , ;)"  .
e

This equation is numerically solved for the velocity profile using the

4 e
Cebeci-Smith method4 . The displacement thickness 6* along the body

3
surface is then computed through the equations (A8 ) and (A9)

R -6* s U
3 - 3 e 6

' % p2
3

6*
--- -6*(,)"

Ue3S
where

U 6* U D
R6* e3) v

3
and

6* , I (1-f') dfl.

0

From this equation, it is seen that the body Reynolds number RD has

a direct effect on the displacement thickness 6* along with the value of
3

6 which enters through the computations of 6*(6, ).

D. Orr-Sommerfeld Stability Computations

Using Lhe velocity profile ii and the displacement thickness 6* in
U 3

: the axisymmetric coordinates (s ,y ), the Orr-Sommerfeld equation is

3 3

solved numerically at each point along the body surface s for selected
3

frequencies of the disturbance waves. When one or more of these dis-

turbance waves are found to grow (a <0), then the amplification rate

i

8
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L -

In( ) is computed for each of these growing waves until at least one
9% 0

wave is found to supposedly erupt into a turbulent burst (in X z 9-11).
0

This location is then defined as the location of transition St where S

funct (shape, RD).

The solution of this equation is a computational task of order of

magnitude greater than the three other tasks. A major research effort

is being pursued in developing more efficient algorithms that will reduce

the computer execution time. The recent work by Von Kerczek 5 indicates

that this task can be performed within reasonable execution times and cost.

Extensive numerical solutions to these equations have been obtained

for a wide class of laminar velocity profiles referred to as similar flows.

These are the cases when 6 = constant and f = f(n) and includes conical

shape noses of half angle . These results clearly show the strong

dependence of the location of instability on the values of $. More

specifically, these results, to a rough approximation, give

7 7 47

Similar Flows Conical Similar Flows7

r6*)crit B (cone half angle)
1.0 12,490 .500 90.CO
0.8 10,920 .421 81.60
0.6 8,890 .333 71.30
0.4 6,230 .210 58.20
0.2 2,830 .125 40.30
0.0 520 .064 27.70

.033 19.00
0 00

5Von Kerczek, C., Private Communication.

d6
Evans, H.L., "Laminar Boundary-Layer Theory," Addison-Wesley Publishing
Co., London, p.121,p. 70 (1968).

7White, F.M., "Viscous Fluid Flow," McGraw-Hill, New York, p. 341, p. 405
(1974).

9

7 j 777 'q

%

* 0 0 S SS S S S 0 SN



2.0 DISTINCT FEATURES OF AXISYMMETRIC FLOWS

2.1 DISTINCTION BETWEEN TWO-DIMENSIONAL AND AXISYMMETRIC FLOWS

A clear distinction should be made between the axisymmetric coordinates

(s ,y ) where s is the distance along the nose surface and y is normal, 3 3 3 3

to the surface, and an equivalent two-dimensional system (s ,y ) such as_ 22

that along a flat plate. Figure 2 summarizes the transformations and

boundary layer characteristics for each of these cases. In

The two systems are considered equivalent if, after the transformation,

the transformed variables E,n are equivalent and 8 - . In order to
2 3

make a comparison between the two-dimensional and axisymmetric system,

two cases can be equated:

CASE I - Equivalent Downstream Distance

Given: U (s) and r (s)
e 3 0 3

3

Assume: S = s
3 2

Then, the two flows are equivalent when

y r y U (s)=rU (s)2 0 3 e 2 0 e 3Eqivlet2 3

CASE II - Equivalent Pressure Gradient in External Flow

Given: U (s )and r (s)
e 3 0 3

3

Assume: U (s) = U (s ) or M M
e 2 e 3 3 22 3 '

Then, the two flows are equivalent when

y r 13 T2 ds= y
2 0 3 2 0 3

o o 340

10
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NM

BASIC ASSUMPTIONS: S =S2 S3 AND U, (S) U (S)

S3 U (S 3)  
2 U( S2 )

I S2

AXISYMMETRIC FLOW TWO-DIMENSIONAL FLOW ',

2S 3 dU. 2S2 dU6
THEN M=M 3 jUe dS3  THEN M=M2 2 UO dS2

003 2P 3 2 = 2P2 

V' ,P >

- dV2

r'63 1 R6;

\/-= P MS = (03,t3 M (02,

v'i~ p > ,',-._,2

3 3 R P2  (S) 0

RR P3 s R )6(2
3 s/R 2.S2 53 \

Figure 2 -Comparison of Two-Dimensional and Axisymmetric
*Boundary-Layer Properties%

Z,%

-F

* 0 0 0 0 0 0 0 0 0 0 0 S S S S %
55', .::- .. ,::!i . '., , *..-, ... . .. -:. ..



It is erroneous to make a direct comparison of the axisynmmetric flow

field with those of a two-dimensional system in which one equates both

the distance downstream along a flat plate with the axisymmetric surface

distance (s s ) and assumes identical external pressure gradients
2 3

(M =M ). The values of $ used for the computation in the transformed

coordinates ( ,n) will be different and thus the computed boundary layer

characteristics are not identical. By examining the equations given in

Figure 2, one can show that in a favorable pressure gradient region near

the nose or leading edge

two-dimensional flow axisymmetric flow

1 > P >1 /2> P >

1.0 _>0 0.5 > > 0
2 2

Consequently, the pressure gradient parameter 6 on the equivalent flat
2

plate will be higher by a factor of 2 from the true axisymmetric pressure

gradient 8 despite the fact that both systems have the same external3

flow fields.

It can also be shown that the displacement thickness ratio between

the actual 6* and the equivalent two-dimensional 6* will be

3 2X

6* p (s) 6*( E 1 6*( 1&

6* P3 (s 3 *( A T 6*(8 6
23 3 3 3

where 8 > 8 and & >12 3 2 3

Similarly, solutions of the boundary layer equations, 6*(8),

"p." 7
decrease slightly with increasing values of a, as shown below

12
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Elliptical Forebodiest-1.00 t=.50oo ==. 250

SSimilarity 6*(0,) P2  6*(8, ) p 2  6*(8, ) p 2

6*3) 3 3

1.00 .648 - - - - - -

.50 .804 .804 2.00 .804 2.00 .804 2.00

.40 .852 .836 1.73 .842 1.82 - -

.30 .911 .871 1.58 .889 1.66 - -

.20 .984 .911 1.47 .949 1.46 .945 -1.54

.10 1.080 .958 1.39 1.020 1.23 1.040 -1.30

.0 1.217 .996 1.33 1.113 1.06 1.172 -1.00

"t" in the above set of values, is the ratio of the minor-to-major axis

6*(82)

Therefore 6*(02) < 6*(3) or - 0.82.
~6"(B3)

By examining various numerical examples, one obtains the approximation

that

6* 0.86 6-

3 
2

and leads one to speculate that in general, the displacement thickness

along an axisymmetric body would be slightly thinner than the equivalent

displacement thickness along a flat plate with the identical pressure (

distribution.

In summary, two generalized remarks can be made*:

i) The pressure gradient imposed by the external flow on an

axisymmetric body is weaker than the equivalent pressure gradient imposed

on a two-dimensional flat plate. q

*Similar conclusions have been expressed by Kaups on page 10 of Douglas
Report No. MDC J6530 (April 1974).
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ii) The displacement thickness on the axisymmetric body, 6* , is

thinner than that which would exist on the flat plate with an equivalent

pressure gradient.

The fact that the boundary layer characteristics on an axisymmetric

body are different than those on a flat plate requires one to interpret

this distinction from the standpoint of their effect on transition. By "--

comparing the location of transition on an axisymmetric body with that .

of a flat plat with identical pressure distribution, the weaker pres-

sure gradient, in terms of 8, is an adverse effect to enhancing a stable

flow while the thinner boundary layer is a favorable effect8

* 2.2 LOCALIZED FLOW PROPERTIES GOVERNING TRANSITION

In the discussion on the stability prediction method, it has been

emphasized that the local values of the pressure gradient parameter 8

have a strong influence on the location of transition. Specifically,

that transition is delayed by a strong favorable pressure gradient (8

as large as possible). The values of 8 are inherently related to the

geometrical shape of the body and, as previously discussed, require

different interpretations for two-dimensional and axisynmetric flows.

Let us try to see, more specifically, how the magnitude of 8

0 affects the onset of transition. Consider a favorable pressure gradient

0.5 > 8(s3) > 0 representing the region downstream of the stagnation

point. One can present a somewhat simplified and qualitative interpreta-

tion of the transition process by arguing that the instability of a Jis-

turbance wave will occur when the local displacement thickness R6,(s3),
3

8 Kaups, K., "Transition Prediction on Bodies of Revolution," Report
'A No. MDC J6530, Douglas Aircraft Co., Long Beach, California (Apr 1974).
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computed at each downstream position, exceeds a certain critical value

(R6*)crit. Some justification for using the dimensionless displacement

thickness as a measure of the stability threshold are presented by

9
Lighthill in which R is interpreted as a ratio of the convection rate

to diffusion rate of a disturbance in the vorticity field. Alternatively,

one could use the dimensionless momentum thickness R since this appears

to be the fundamental characteristic proposed by Granville in Reference 2.

The displacement thickness R6, e ) increases along the down-
3 )

stream distance because of the growth of the boundary layer. The particu-

lar rate of the growth depends on the local values of the pressure gradient

parameter 6, and the body Reynolds number RD. On the other hand, the

critical Reynolds number (R,)tcr t has an extremely large value at the

-stagnation point but decreases, rather drastically, along the downstream

distance because of the decreasing a. When the increasing value of R,
3

equals the decreasing critical value (R6,)crit , transition will occur.

Figure 3 schematically illustrates this condition for three arbitrary

body shapes. The key to delaying transition is then two-fold:

i) Extended Favorable Pressure Gradient Region

The local pressure gradient parameter 6 should be as large

as possible over an extended region in order for a high critical Reynolds

number or (R) f funct (6) should be large.
6*)cr it

ii) Thin Boundary Layer During Downstream Development

The boundary layer growth should be as thin as possible

during its downstream development, or R6 , function (P3, ,RD) should be
3

Rosenhead, L., "Laminar Boundary Layers," Clarendon Press, Oxford,
England, p. 88-90 (1963).
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Figure 3 - Schematic Diagrams Illustrating the Effects of
Nose Shapes on the Location of Transition
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small. Note that equation (A9) gives

- 2 .*(- ,'!V'UR

3 3 PeRD

3 3 V

where
6*(.5,0) .804 .568.

1.414

Both of these aspects are enhanced by a (S) function which decreases
3

at the slowest possible rate from its maximum value at the stagnation point.

It is important to note that the rate of growth of the boundary layer
U D

thickness is strongly influenced by the body Reynolds number 
RI)- -

V
more so than by the magnitude of B. Therefore, despite the advantages of

the favorable pressure gradient in delaying transition past the (Cp)
p min

* location, transition can still move forward and occur within the favorable

pressure gradient region at very high Reynolds number R. This is illu-

strated in Figure 4 for body B of previous figure.

A comparative evaluation of several body shapes can be made by

" examining the behavior of the 8 curves downstream of the stagnation point

for each of these shapes. These results can be obtained from the potential

flow computation (Program I). Figure 5 illustrates these 6 computations

for the standard ellipsoidal forebodies obtained from the Neumann Program.

Imposed on these figures is the 6 curve for an "idealized" shape body

possessing the property of a large value of a and consequently a large

value of (R5 ,)crit downstream of the stagnation point.

The growth rate of the boundary layer downstream of the stagnation

point is also an important feature in evaluating several body shapes. The

laminar boundary layer computations for each of the body shapes are
required (Program II). However, as one would expect, the shape of these

curves downstream of the stagnation point are initially quite similar

17
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until 8 0 for each of the respective shapes. Figure 6 illustrates

* these computations for ellipsoidal nose shapes at fixed R.

3.0 EFFECTS OF GEOMETRIC SHAPE ON TRANSITION

3.1 COMPARISON OF VARIOUS SHAPES AT FIXED RD

As previously stated, the first task in any evaluation of the

location of transition on an axisymmetric nose is to compute the potential

flow or pressure distribution around the body surface. The relationship

between the geometrical shape of an axisymmetric body and the shape of-[N

the pressure distribution curve (C versus -) or the freestream velocity
U p De X ", 4

curve (e versus -) has been extensively studied. The two most char-UT D0o

acteristic features are the magnitude and location of (C ) or alternately,
U 1 1 pmin

the magnitude and location of-) where C 1 - ( - Figure 7
UUC max p U0

e
illustrates the - curves for a family of elliptic noses. The streamwise

* body surface location of (C for each of the bodies, denoted earlier

p min

as S is easily seen in Figure 7 and shows that the more blunt the

Pmin.
body shape, the less the extent of the favorable pressure gradient region.

The M curve can, to a resonably good approximation, be interpreted .[,.k

as the a curve. The local value of M or 6 at each point along the body
3

surface can be correlated with the slope of the body shape obtained by ..

drawing a tangent line at the body surface. A large slope gives a large

value of 8. This conjecture is based on examining conical similar flows

which give constant values of B for conical half angles 4, these values

of 8 versus are tabulated on page 9 of this report. In fact, a conical

shape with ¢ large downstream of a spherical nose cap would ideally

p' represent a good shape since 8 > 0 over the downstream distance. However,

20
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in order to realistically attach this conical shape smoothly to a

cylindrical body of prescribed diameter, the conical surface distance

would be quite limited. Therefore a large pressure gradient would exist

but would not extend far enough downstream.

As previously discussed, the effects of body shape on the growth of

the boundary layer thickness for a fixed RD does not appear to be a

significant factor except in the vicinity of (C) where an abrupt

increase exists for each of the respective shapes.

As emphasized earlier, a large positive value of 6 is desirable

downstream of the stagnation point for as large a downstream distance as

possible. A tradeoff clearly becomes evident between a large favorable

pressure gradient (a large) and an extended favorable pressure gradient

region (S large). A good design of a nose shape is one that can, P~~min .

optimize these conditions.

The location of the transition point S on each body shape is shown
t

in Figure 7 for an RD = 20 x 106. These results were obtained from those

reported by Kaups (MDC J6530, April 1974) in which the Smith-Gamberoni

prediction method was used. These results confirm the arguments just

presented. For the elliptic noses shown in Figure 7, the nose with an

aspect ratio of t = .50 has transition occurring farthest downstream.

Inspection of the B curves would indicate that t - .500 and t - .707 have

the best shapes among the four candidates. In summarizing the conclusions

on the effect of body shape on transition, one should inspect the
(sX v X a R 3  S
(Cp versus versus ), ( versus ) curves for several shape

p D b,, - D
RDnoses and conclude that the "best shape" is the one with the following

attributes:

23 '1.-:
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i) The location of (C should be as far downstream of the

nose as possible. (6 > 0 exists over an extended region). ]
ii) The values of 0 should be as large as possible in the upstream

vicinity of S • (0 large positive number).
Pmin U

iii) The value of (-) should be as small as possible.
iii)~ ~ ~ Tevleo Fmaxshudbasmllspoile

iv) The value of R, should be as small as possible in the

3
upstream vicinity of S 4.

Pmin

v) The value of the roughness height should be less than 20 per

cent of 6* in the upstream vicinity of S .
The Pmin
The conflicting conditions (i) and (ii) are a direct consequence of the

fact that stability is delayed by a favorable pressure gradient. The

third conjecture is a result of the fact that achieving (Rs )max
U S t
e t(-) does not necessarily assure you that (S) has been achieved
v max t max

since the local velocity Ue (s) is also increasing in the favorable pres-

sure gradient region. Furthermore, the boundary layer growth rate
Ue

increases with increasing Thus, condition (iii) also introduces a

conflict with the criteria suggested under conditions (i) and (ii).

Therefore, an optimum condition must exist on choosing the shape with

rather unique pressure distribution features.

Conditions (iv) and (v) are based on examining the results from the

boundary layer computations and are of secondary importance in assessing a

.-*_ good shape. Condition (v) is only a reminder that with decreasing 6*, CV3

desirable for delaying transition, one is more likely to trip transition

by means of a surface proturberance.

3.2 EFFECT OF HIGH REYNOLDS NUMBER ON TRANSITION

In designing the best possible nose shape for high Reynolds number

operation (RD > 30 x 106) it is the authorR' conjecture that the best that
24
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one can hope for is that transition will occur at or slightly downstream

of the location of the minimum pressure (Cp min or that

St -S
Pmin

For these high Reynolds numbers, the dimensionless boundary layer rate of

growth, given by equation (A 9)

R 6 * - "* ( D U oo R D "
3 wr2

increases as V and this is illustrated schematically in Figuie 4. It

is clear that with increasing body Reynolds number, transition will

continuously move upstream and eventually occur within the favorable

pressure gradient region. This is confirmed by the results obtained by

Kaups and illustrated in Figure 8 for elliptical shape noses. At

6
Reynolds number above RD = 30 x 10, transition moves upstream of the

S location for most the bodies shown in Figure 8. Therefore, a large
Smin

value of a upstream of the S location, will slow down the
Pmin

upstream movement of the transition point S with increasing speed or
Reynolds number t

Furthermore, the "best shape" for transition postponement at a low

Reynolds number might not be the best choice at higher Reynolds number.

Examining Figure 8 shows that the elliptical nose with an aspect ratio

of t - .500 delays transition the farthest downstream at RD - 10 x 106
.

while the more blunt nose body with an aspect ratio of t .707 delays
p..>6

transition the farthest at a body Reynolds number of RD  50 x 106

, 
.. 4 .',.25
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It should be realized that with an increasing R., the thickness of

the boundary layer actually decreases. This can be deduced from

equation (A8) which gives

s a

D *0*U *1

3D

where

6*(0.5,0) = .568 and 1.2 t 6*(a,) > .804

V .2-

Thus, the possibility of roughness tripping the laminar boundary layer .

increases significantly at high Reynolds numbers.

..'" The remarks made on the effects of high Reynolds number on

transition should be interpreted as being somewhat speculative. Experi-

mental data is seriously lacking in both understanding the complex

transition process under these conditions, and confirming the validity

of the stability prediction method at these high Reynolds numbers. Even

the most basic types of laboratory experiment are not usually possible

in the range of Reynolds number under consideration. Secondary effects

such as surface roughness can play a governing role on the transition --

process at these conditions. Experimental tests on large axisymmetric

bodies are required in order to shed light and give further direction

to the factors governing transition under these extreme conditions.

4.0 SUMMARY AND CONCLUSIONS

A study was made to examine and gain insight into the inherent
features and characteristics of the laminar boundary layer on axisymmetric
fs 27
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bodies that are used as a basis for the Smith-Gamberoni method of pre-

dictions. The ability of the method to accurately predict, for a given

body shape and prescribed body Reynolds number R D, the location of

transition can only be attested by comparing the predictions with experi-

mentally obtained results such as those obtained by DTNSRDC. However,

". accepting the condition that this method reflects the current state-of-the-

art for prediction techniques, an effort was made to examine carefully

those potential flow and laminar boundary layer characteristics of the

viscous flow region that are used as input for the complex stability

computations, and to find a correlation between certain geometrical and

hydrodynamic characteristics of a given body shape, and to ascertain the

ability of that shape in delaying transition.

For purposes of explanation, the transition process is envisioned

as the condition under which the downstream growth of the boundary layer,

denoted by R6, , is such that it exceeds a critical value (R6,)crit and

that the sophisticated stability computation program is essentially per-

forming this computation as rigorously and accurately as possible. Based

on this interpretation, the key to delaying transition is to maintain

as thin a boundary layer as realistically possible and provide an

external flow environment with a strong favorable pressure gradient.

It is suggested that a comparative evaluation of various shapes

be made without extensive boundary layer computations or stability com-

putations but by simply comparing the shapes of the pressure gradient

parameter B curves from the stagnation point downstream until the Cu-i-

location is reached. It is concluded, with a certain degree of con-

jecture, that the best shape for delaying transition is correlated with

28
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shape of the 8 curve. It should be emphasized that one can compute the

8 curves for each body directly from the potential flow computations.

The question of obtaining the "optimum design" of a nose shape is not

straightforward but the inherent boundary layer characteristics Uost ]
favorable in delaying transition are discussed and some examples of

geometrical shapes for which stability computations have been performed

are presented to show the attributes of a good design. These examples Ii
give some direction to future work in obtaining optimal designs.

An important area for immediate assessment is the effect of

high body Reynolds number on the transition process. This has been

addressed with a certain degree of speculation since experimental data is

seriously lacking in either shedding light on the transition process or

in confirming the validity of the stability prediction methods at these

Reynolds numbers.
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APPENDIX A

Summary of the Transformations f or Flat Plates and Axisymmetric Bodies

A.1 The Coordinate Transformations

A.1.1 The Cebeci-Smith Form

Flat Plate (k=0) Axisymmetric Body (k=l)

dC pp u dS dC P~i u T2 dS
e e 2 e eo 3

Pu Pu
dn e dy d~= e r dy

2 ir 0o3

A.1.2 The Generalized Mangler Form

-Flat Plate (k-0) Axismmeric Body (k-1)

dC P2 uRL dS d ji 2uR FD7i d S (Al)

~e e S2 le e 0 3

*dfl RL dy 2  dri = D__ r 0dy 3

or or

-, =-j RL 2 2= eR 2  S3  (

2 3

2 32

Su Su2 2e 3e

2 2 3 3 o

21 ud 2
f e fe o

ucL uoD

S =x L= D2

B7,
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* Both cases have drawn upon the following definitions.

S S k- Yk+2
k+2 L ~k+2 L

- - r

L ro D

_ 
e

Ue = 0 e

Note that for the flat plate case it can be shown that, as expected,

and rare independent of any length scale L.I

A.2 The Pressure Gradient Parameter

Flat Plate (k=O) Axisyinmetric Body (k=l)

M M3
3 2 3A

2p2  2p2  F.
2 3

M =R 2x deM R- du (A5)
2 2 - - 3 3- -

u dx 3 u dx
e e

: 3
R =1 R i r) (A6)

0

rr

0dx

__2_ 23eeo (A7)

2 3 3k
2 fSuedS 2 fS 3u e-r dS

0 0

A.3 Boundary Layer Properties

Flat Plate (k=Q) Axisymmetric Body (k1l)

S6* + 6* +
2 M 3 _M

L 5*(3,0 D -- 6*(3,0 (A8)
RLU eR D ue
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R R
-- = --- V*B I- - 1,(-,I (A9 7 -T " ,

R** +
2 M 3 M4

0= M+ 6 = 0(,) (AlO)
L RLU R U -

R R
M 3

R0-- M+ (8, ) - = - 0(,) (All)

H=6*(0,0 H =_____H =H (A12)'-".-.00,E) e (0, 0

•2 ft2 fiCf -- - f" cf - f" (A13)
M + w f + W

\'-M M

M S2'e M+ 3' e (A14)
2 2

2 3

Both cases have drawn upon the following definitions,

=*0 f (1-fo) dn f f'(l-f') df
0 0

--- Uevk+2 R _ UeOk+2

k+2 V k+2

A.4 Turbulent Flow Parameters

For both cases the following equations are utilized,

33
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1 M. Casarella 1 192 Orzalli
1 J. Niedzwecki 1 193 Olson
1 Y.C. Whang 1 1932 Hoover

1 1933 Lee

1 Harvard University 1 1933 Stefanowicz
1 G.A. Baker 1 1942 Shen

1 1942 Blake
1 Univ. of Illinois 1 1942 Bowers

I M.V. Morkovin 1 1942 Brown
1 1942 Chandler

S1 Penn State University 1 1942 DeMetz

1 J.J. Eisenhuth 1 1942 Farabee
1 1942 Geib

, 2 ARL, Penn State Univ. 1 1942 Gordon

1 Dr. B. Parkin 1 1942 Granum
1 Dr. R. Arndt 1 1942 Lewis

1 1942 Mathews

2 Princeton University 1 1942 Paladino
I S.I. Cheng 1 1946 Spina

.. ~ 1 G.L. Mellor 1 1946 Intolubbe

30 5214.1 Report Distribution
3 Massachusetts Inst. of Tech. 1 522.1 Library (C)

1 S.A. Orszag 1 522.2 Library (A)
EL 1 M.T. Landahl

1 P. Leehey
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DTNSRDC ISSUES THREE TYPES OF REPORTS

(1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF
PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.

(2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMA.
TION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR

* SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL
WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES
REPORTS; NOT FOR GENERAL DISTRIBUTION.
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